Maximally selected chi-square statistics and non-monotonic associations: an exact approach based on two cutpoints

نویسندگان

  • Anne-Laure Boulesteix
  • Carolin Strobl
چکیده

Binary outcomes that depend on an ordinal predictor in a non-monotonic way are common in medical data analysis. Such patterns can be addressed in terms of cutpoints: for example, one looks for two cutpoints that define an interval in the range of the ordinal predictor for which the probability of a positive outcome is particularly high (or low). A chi-square test may then be performed to compare the proportions of positive outcomes in and outside this interval. However, if the two cutpoints are chosen to maximize the chi-square statistic, referring the obtained chisquare statistic to the standard chi-square distribution is an inappropriate approach. It is then necessary to correct the p-value for multiple comparisons by considering the distribution of the maximally selected chi-square statistic instead of the nominal chi-square distribution. Here, we derive the exact distribution of the chi-square statistic obtained by the optimal two cutpoints. We suggest a combinatorial computation method and illustrate our approach by a simulation study and an application to varicella data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximally selected Chi-squared statistics and non-monotonic associations: An exact approach based on two cutpoints

Binary outcomes that depend on an ordinal predictor in a non-monotonic way are common in medical data analysis. Such patterns can be addressed in terms of cutpoints: for example, one looks for two cutpoints that define an interval in the range of the ordinal predictor for which the probability of a positive outcome is particularly high (or low). A Chi-squared test may then be performed to compa...

متن کامل

Maximally selected chi-square statistics for ordinal variables.

The association between a binary variable Y and a variable X having an at least ordinal measurement scale might be examined by selecting a cutpoint in the range of X and then performing an association test for the obtained 2 x 2 contingency table using the chi-square statistic. The distribution of the maximally selected chi-square statistic (i.e. the maximal chi-square statistic over all possib...

متن کامل

Maximally selected chi-square statistics and umbrella orderings

Binary outcomes that depend on an ordinal predictor in a nonmonotonic way are common in medical data analysis. Such patterns can be addressed in terms of cutpoints: for example, one looks for two cutpoints that define an interval in the range of the ordinal predictor for which the probability of a positive outcome is particularly high (or low). A chi-square test may then be performed to compare...

متن کامل

Maximally selected chi-square statistics for at least ordinal scaled variables

The association between a binary variable Y and a variableX with an at least ordinal measurement scale might be examined by selecting a cutpoint in the range of X and then performing an association test for the obtained 2 × 2 contingency table using the χ2 statistic. The distribution of the maximally selected χ2 statistic (i.e. the maximal χ2 statistic over all possible cutpoints) under the nul...

متن کامل

Maximally selected chi-square statistics and binary splits of nominal variables.

We address the problem of maximally selected chi-square statistics in the case of a binary Y variable and a nominal X variable with several categories. The distribution of the maximally selected chi-square statistic has already been derived when the best cutpoint is chosen from a continuous or an ordinal X, but not when the best split is chosen from a nominal X. In this paper, we derive the exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006